Evaluating the Applicability of GTN Damage Model in Forward Tube Spinning of Aluminum Alloy
نویسندگان
چکیده
Tube spinning is an effective plastic-forming technology for forming light-weight, high-precision and high-reliability components in high-tech fields, such as aviation and aerospace. However, cracks commonly occur in tube spinning due to the complexity of stress state, which severely restricts the improvement of the forming quality and forming limit of components. In this study, a finite element (FE) model coupled with Gurson-Tvergaard-Needleman (GTN) damage model for forward tube spinning of 3A21-O aluminum alloy is established and its applicability is evaluated by experiment. Meanwhile, the GTN damage model is employed to study the damage evolution for forward tube spinning of 3A21-O aluminum alloy. The results show that the FE model is appropriate for predicting the macroscopic crack appearing in uplift area for forward tube spinning, while the damage evolution in deformation area could not be predicted well due to the negative stress triaxiality and the neglect of shear deformation. Accumulation of damage in forward tube spinning occurs mainly in the uplift area. Void volume fraction (VVF) in the outer surface of the tube is higher than that in the inner surface. In addition, it is prone to cracking in the outer surface of tube in the material uplift area.
منابع مشابه
Application of the GTN Model in Ductile Fracture Prediction of 7075-T651 Aluminum Alloy
In this paper the capability of Gurson-Tvergaard-Needleman (GTN) model in the prediction of ductile damage in 7075-T651 aluminum alloy is investigated. For this purpose, three types of specimens were tested: Standard tensile bars, Round notched bar (RNB) specimens and compact tension (C(T)) specimens. Standard tensile bar tests were used to obtain the mechanical properties of the material and t...
متن کاملThe Effects of Forming Parameters on the Single Point Incremental Forming of 1050 Aluminum Alloy Sheet
The single point incremental forming (SPIF) is one of the dieless forming processes which is widely used in the sheet metal forming. The correct selection of the SPIF parameters influences the formability and quality of the product. In the present study, the Gurson-Tvergaard Needleman (GTN) damage model was used for the fracture prediction in the numerical simulation of the SPIF process of alum...
متن کاملEvaluation of continuum damage at different temperatures for aluminum-silicon alloy of engine piston within low-cycle fatigue regime
In this article, the isothermal low-cycle fatigue continuum damage in the engine piston aluminum alloy has been evaluated at different temperatures. For this objective, experimental data of low-cycle fatigue tests on standard specimens were used at 280, 350 and 425°C. Based on the continuum damage mechanics method, the fatigue damage was calculated during cyclic loading. Obtained results, inclu...
متن کاملPrediction of forging force and barreling behavior in isothermal hot forging of AlCuMgPb aluminum alloy using artificial neural network
In the present investigation, an artificial neural network (ANN) model is developed to predict the isothermal hot forging behavior of AlCuMgPb aluminum alloy. The inputs of the ANN are deformation temperature, frictional factor, ram velocity and displacement whereas the forging force, barreling parameter and final shape are considered as the output variable. The developed feed-forward back-prop...
متن کاملAn Analysis on the Forming Characteristics of commercial pure Aluminum AA 1100 in Radial-Forward Extrusion Process
Abstract: In this paper, the forming process of a central hub by radial-forward extrusion is analyzed by using the finite element software, ABAQUS. Radial-forward extrusion is used to produce hollow parts that generally feature a central hub with radial protrusions. Effective design factors such as mandrel diameter, die corner radius, die fillet radius, mandrel corner radius, tube wall thick...
متن کامل